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Nonequilibrium Phase Transitions in a Simple 
Three-State Lattice Gas 
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We investigate the dynamics of a three-state stochastic lattice gas consisting of 
holes and two oppositely "charged" species of particles, under the influence of 
an "electric" field at zero total charge. Interacting only through an excluded- 
volume constraint, particles exchange with holes and, on a slower time scale, 
with each other. Using a combination of Monte Carlo simulations and mean- 
field equations of motion, we study a set of suitably defined order parameters, 
their histograms and fluctuations, as well as the current through the system. 
With increasing particle density and drive, the system first orders into a charge- 
segregated state, and then disorders again near complete filling. The transition 
is lirst order at low densities and turns second order at higher ones. The finite- 
size and aspect-ratio dependence of characteristic quantities is discussed at the 
mean-field level. 

KEY WORDS:  Driven lattice gas; order-disorder transition; Monte Carlo 
simulations; mean-field equations of motion: slow mode; adiabatic elimination. 

1. I N T R O D U C T I O N  

The art and science of  modeling of physical systems in nonequilibrium 
steady states have attracted considerable attention in the past decade. 
Driven stochastic lattice gases are among the simplest ones in which the 
statistical mechanics of  such steady states can be studied. ~ The "standard 
model," introduced over a decade ago by Katz et al. ~2~ is an Ising lattice 
gas with periodic boundcoT conditions subjected to a hopping dynamics in 
the presence of a uniform external "field" which favors (suppresses)jumps 
along (against) a particular direction on the lattice. Through Monte Carlo 
simulations, this system (at half filling) was shown to undergo a continuous 
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transition, at a field dependent temperature, from a disordered to a phase- 
segregated steady-state configuration. Theoretical understanding of these 
results is severely limited by the lack of Boltzmann-like factors which 
describe such stationary, but nonequilibrium, states. Nevertheless, dynamic 
field-theoretic renormalization group techniques 13) can be applied so that 
the critical properties associated with the second-order transition can be 
computed. The fixed point is non-Hamiltonian and is best displayed as a 
dynamic functional) 4~ A number of the critical exponents, distinct from 
those in the Ising universality class, are confirmed by simulations. ~5~ A recent 
review of this early model, as well as the multitude of variations can be 
found in Ref. 1. 

One natural generalization of the "standard model" is a lattice gas of 
more than one species of particles. The motivations come from both 
theoretical interests and physical systems. Examples of the latter range 
from fast ionic conductors with several mobile species c6~ and water droplets 
in microemulsions with distinct charges ~7~ to gel electrophoresis ~s~ and traf- 
fic flow) 9) From a theoretical viewpoint it is of great interest to study the 
effects of external drives on not just the Ising model, but models with rich 
equilibrium phase structures, e.g., Potts, t~~ Ashkin-Teller, ~ Blume- 
Emery-Griffiths, t~2~ ANNNI,  ~31 etc. In this paper we will focus on one of 
the simplest possibilities where only two species of particles, driven in 
opposite directions, are present/H. ~51 There are no interparticle interactions 
apart from a strict excluded-volume constraint. If the drive is absent, this 
model consists of simple diffusion into the totally random equilibrium state. 
Once the drive is turned on, however, an interesting phase diagram 
emerges, even for a system restricted to particle-hole exchanges and equal 
numbers of the two species. ~4" 16) In particular, for low particle densities 
and drives, the system settles into a homogeneous disordered state with a 
high steady-state current. If either parameter is increased, the system under- 
goes a transition into an inhomogeneous state, with a small current. Here, 
one species blocks the progress of the other species and "gridlock" occurs. 

In this paper we explore the effects on both the phase transition and 
the ordered states if the particles are also allowed to exchange among 
themselves. If we interpret the action of the drive on the particles as an 
external "electric" field on oppositely "charged" particles, then we may refer 
to this new process as "charge-exchange." In particular, we will introduce 
the ratio ),, which is the rate of charge exchanges relative to particle-hole 
exchanges, To model ions of different species, ~6) ), should be vanishingly 
small. On the other hand, to model charged water droplets, ~7~ we are 
obliged to let ), be large, since charges move between droplets much faster 
than diffusion of the droplets. Since we will restrict ourselves to the non- 
interacting case, we do not expect any interesting phase transitions in the 
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large-), limit, though that system may display anomalous diffusion. <~7~ 
Therefore, we will explore only the ), < 1 regime. We should mention that 
in o n e  d i m e n s i o n  the steady-state distribution of our model is known 
analytically.~ ~8~ Further, systems with o p e n  b o u n d a r i e s  display the unexpec- 
ted phenomenon of spontaneous symmetry breaking, c~9~ Our interest 
focuses on higher dimensions, in which richer critical phenomena typically 
take place. 

In the next section we define the microscopic model and give some 
details of the MC simulations. In Section 3, we report the main simulation 
results: the extension of the density-field phase diagram in ref. 14 to a third 
dimension, i.e., y. Theoretical understanding of the shape and nature of the 
order-disorder phase boundary, the subject of Section 4, is achieved within 
a mean-field approach. In a final section, we conclude with a brief sum- 
mary and some open questions. 

2. THE M I C R O S C O P I C  M O D E L  A N D  ORDER P A R A M E T E R S  

We consider a square lattice of L• x L, sites with periodic boundary 
conditions. Each site can be empty or occupied by either a positive or a 

+ and n~. negative particle. Therefore we define two occupation variables n,:,. . .  
in the usual way, i.e., assuming the values 1 or 0 depending, respectively, 
on the number of positive and negative particles at site (x, y). Our model 
is "noninteracting" in the sense, that apart from this excluded volume con- 
straint, there are no other interparticle interactions. In particular, though 
we refer to these particles as "charged," they do not interact via the usual 
Coulomb potential. The charges couple only to the external drive, which 
we refer to as an "electric" field. We choose this field to be uniform in both 
space and time, with magnitude E and directed along the + y-axis. 

In the absence of the drive the dynamics does not distinguish between 
species. A particle can randomly hop to a nearest neighbor empty site with 
a rate F ,  In addition, if a nearest neighbor site is occupied by an oppositely 
charged particle, they may exchange with rate ~,F. Since charge is the only 
attribute of the particles, the latter process is also referred to as "charge 
exchange." In the presence of the field the rates of moving against the force 
will be suppressed exponentially. 

For our simulations, we set F =  1, randomly choose a nearest neighbor 
pair of sites and exchange their contents according to the following rules: 

(i) If one site is occupied and the other is empty, the exchange occurs 
with probability 

WI,  h =min{ 1, e 'I " '~'' " E} (la) 
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where q is the charge of the particle (q-- + 1) and dy is the change in the 
y coordinate of the particle due to the jump. 

(ii) If the two sites are occupied by opposite charges, a particle- 
particle exchange (or charge transfer) is attempted with the probability 

W~,~,= ~,.min{1, e '~-~E} (lb) 

where now Oy is the change in the y coordinate of the positive particle due 
to the jump. Needless to say, it is irrelevant whether exchange takes place 
or not if both sites carry identical content. Note that, IocalO,, these 
Metropolis rates satisfy detailed balance. However, due to the periodic 
boundary conditions, the states we seek will not satisfy this condition. After 
L I  . L~ I random pairs have been chosen "time" is incremented by a Monte 
Carlo step (MCS). 

The microscopic dynamics defined above clearly conserves the number 
of each species separately. These two conserved quantities may also be 
chosen to be the total particle number and the net charge, which we will 
associate with the terms "mass" and "charge," respectively. In the simula- 
tions, we restrict ourselves to systems with zero net charge, but vary the 
overall mass density: 

1 
LILll ..,.~,. [n.,+.' + n.': I'] 

Since an equal number of positive and negative charges are driven in 
opposite directions, the average mass current through the system vanishes. 
In contrast, the average charge current is highly nontrivial, distinguishing 
between ordered and disordered states. To summarize, we have three con- 
trol parameters: ifi, E, and ),. In addition, to investigate finite-size effects, 
we have used several system sizes: L j_ and LII. 

This model can be described by P[ C, t], the probability of finding our 
system in the configuration C = -[17 +, 17,7,.} at time t. Its time evolution is " ' 7  . 

governed by a master equation: 

0 
o t P [ C , t ] = ~ ' , { W ( C ' ~ C ) P [ C ' , t ] - W ( C ~ C ' ) P [ C , t ] }  (2) 

c '  

where W(C' ~ C) is the transition rate from C' to C. Of course, C and C' 
can differ by just one nearest neighbor pair of occupation numbers, with W 
being one of the rates Wph and Win, specified above. Starting our model in 
some initial, e.g., random, configuration, we are interested in its behavior 



Phase Transitions in Three-State Lattice Gas 725 

in the t ~ o~ limit, where we expect it to reach a stationary state with 
distribution P*[C] .  Had we chosen boundary conditions suitable for 
inducing an equilibrium state (e.g., "brick wall"), P*[C]  would be just 
the familiar Boltzmann factor. By imposing periodic boundary conditions, 
we expect a nonequilibrium, t-independent state, with violation of detailed 
balance in general: 

W( C' --. C)P*[ C'] # W( C--+ C') P*[ C] (3) 

In principle, finding P*[C]  involves nothing more than solving a 
linear equation, (2), with 0 on the left. In practice, however, this is 
impossible, except for special values of #~, E and y. These particular excep- 
tions are: 

(i) The E =  0 plane. This is an equilibrium, "noninteracting" system. 
The particles diffuse randomly, both densities are homogeneous and 
P* oc 1 is the trivial solution. 

(ii) The ~h=l  plane, with ~,>0. Here there are no holes, so that 
charge exchange is the only dynamics. Relabeling negative charges as 
"holes" and positive charges as "particles," the system reduces to the biased 
diffusion of a single, noninteracting species. The steady-state is, though 
nonequilibrium, also known exactly: ~-'"~ P* ~ 1. While the densities are 
again homogeneous, the current no longer vanishes here. 

(iii) The ) '=1 plane. With equal rates Wp/,=Wpp, a positive 
(negative) charge can no longer distinguish a negative (positive) particle 
fi'om a hole. Thus, a positive (negative) particle experiences biased diffu- 
sion, slowed only by encounters with other positive (negative) particles, 
just as in the case of a single, noninteracting species, and spatial 
inhomogeneities are again impossible for either charge density. We can 
show that P *~  1 holds as in case (ii). 

(iv) Finally note that the ih = 1, ~, = 0 line is singular in the sense that 
the system remains completely frozen in its initial configuration. 

None of these cases displays nontrivial spatial structures. Interesting 
phenomena such as transitions to inhomogeneous steady states are typi- 
cally found through Monte Carlo simulations of P*. The spontaneous for- 
marion of spatial structures, resembling a single, transverse strip of 
predominantly positive charge, blocking a similar strip of mostly negative 
charge, with the rest of the lattice being nearly empty, is easily observed. 
However, a quantitative phase diagram can only be drawn if one or more 
suitable order parameters are defined and measured. Even though the 
steady-state currents are natural candidates, they are rather indirectly 
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related to the steady state being disordered or ordered. Thus, it is 
reasonable to focus on the average density profiles themselves. In the range 
of investigated aspect ratios L• , inhomogeneities in the x (transverse) 
direction were never observed. Consequently, we focus on profiles averaged 
over x. 

Instead of n-+, we find it more convenient to use the local hole and 
charge densities, defined as follows: 

J .+ . r 1 --( 2,.,. + n.~,.) and ~k.,..,.-= n,.+. - n,Tv 

The corresponding profiles of interest are denoted by 

(4) 

1 1 
~b(y) = ~--~l ~. ~b,.,. and ~b(y) = ~-~l .~ ~k,.,. (5) 

Based on the latter, the quantity 

1 q,(y)]2) 
(6) 

was used as an order parameter earlier, ~t4' 2~1 where < �9 ) denotes average 
over the run, to be specified precisely at the end of this section. It is clear 
that Q is unity for a completely ordered system and zero [actually, 
O(1/L• due to finite-size effects] in the disordered, homogeneous state. 
Though Q served us well in signaling discontinuous transitions, we found 
that it is not very sensitive to the onset of continuous transitions. Indeed, 
this deficiency might explain why the second-order transition line in the 
7 = 0 model had not been detected, even though it was expected theoreti- 
cally, c2-'1 Here, due to },>0, we expect continuous transitions to play a 
more prominent role. Therefore, we seek an order parameter which is more 
sensitive to the onset of small spatial inhomogeneities. A natural choice, 
designed to single out a transverse strip, comes from the amplitude of the 
longest wavelength Fourier component of the profile, as in the single- 
species models. ~5~ Defining the transforms 

1 ,.~ ~b.,.,..exp{ik• } 
~• 

(7a) 

and 

- I 

L• I ~,, 0.,:,, exp{ ikLX + iktty } (7b) 
x , y  
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we see that the relevant components of (5) are; 

~ -  I~o.._./L,, I and ~u- I~o.,=/L,, I (8) 

From (6) it is clear that Q is the sum over all modes ~o,k,, while ~ is only 
the lowest one. As we will show in Section 4, in a mean field approach, 
only this one mode becomes soft near a continuous transition. In this sense, 
the signal of such a transition is expected to be "clean" in ~, but "diluted" 
in Q. In the next section we will see that the simulation data are entirely 
consistent with this picture. 

To summarize, we choose ( ~ )  and (g~) as order parameters. The 
average charge current density ( J )  is also studied, as in ref. 14. To find 
these quantities, we simulate our model on both square and rectangular 
shapes, with L• and Lll ranging from 20 up to 60. Near the transition line, 
runs are started from both random and completely ordered initial con- 
figurations. Elsewhere in the phase diagram, runs are started from random 
configurations. To map out the phase diagram, we perform runs of 
105 MCS (Monte Carlo steps per site), discarding the first 20 K MCS, to 
ensure that the system has reached steady state (which typically, occurs 
already after 10 K MCS). Data are then taken after every 100 MCS. To 
analyze the nature of the transitions, we perform longer runs 
(5 x 105 MCS), discarding the first 62.5 K MCS and sampling after every 
125 MCS. These measurements are then averaged over a run to give ( �9 ). 

3. M O N T E  C A R L O  R E S U L T S  

The phase diagram in (r~, E, y) space has been investigated in some 
detail at three different y's: 0.02, 0.2, and 0.4, using 30 x 30 lattices (Fig. 1 ). 
For small values of r~ and E, typical steady-state configurations are disor- 
dered, characterized by homogeneous densities and large charge current 
( J ) .  For sufficiently large values of y, specifically for y > y , . -  0.62, the 
system remains in this phase for all (rh, E). In contrast, for smaller y the 
excluded volume constraint dominates the charge-exchange mechanism and 
spatial inhomogeneities develop in both charge and mass density as E is 
increased beyond a mass- and y-dependent threshold E,.(rh, y), shown as 
the U-shaped.curves in Fig. 1. The particles gather into a single strip, trans- 
verse to the field, while the rest of the lattice remains essentially empty. The 
particle-rich strip itself is structured into two distinct regions: the 
"downstream" half is dominated by negative charges, while the "upstream" 
segment consists mostly of positive charges (inset of Fig. 1 ). Since the two 
types of charges impede each other, ( J )  is very small in this phase, which 
we will refer to as "ordered." 
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Fig. I. Phase diagram for a 30 x30 system in tile (~h, E) plane for three wdues of T. The 
filled circles mark the lines of  continuous transitions, while the open circles denote the 
spinodal lines associated with the first-order transitions. The inset shows a typical ordered 
conl]guratio,l at E =  3.0 and ifi = 0.4. Phase diagrams for other system sizes are similar while 
all data collapse if E is replaced by the scaling variable ~ =_ 2Lll tanh(E/2). 

3.1. Order Parameters, Currents, and Histograms 

Focusing on the detailed nature of this order-disorder transition, we 
first describe the region of small ), (0.02 and 0.2), with mass density i~-1 
less than a characteristic threshold 1~0(7). As we vary E across the 
transition line E,.(1~1, ~,), we observe abrupt changes in < ~ ) ,  < ~ ) ,  and {, / )  
(Figs. 2a, 2b), signaling a first-order transition. To confirm this assignment, 
we search for another distinct signal of this transition type, i.e., hysteresis. 
Starting from ordered (disordered) initial configurations, we perform a 
series of runs, decreasing (increasing) i~ through the transition region at 
fixed E. Both order parameters and the charge current exhibit hysteresis 
loops, marking the local stability boundaries of the two phases, under these 
conditions. An example is displayed in Fig. 2c. Needless to say, the width 
of the hysteresis region (shown hatched in Fig. 1 for runs of 105 MCS in 
a 30•  system) will vary with system size and length of runs. To 
demonstrate that close to the transition a f ini te  system will switch back and 
forth between the ordered and disordered states, the time trace of ~ was 
measured during long runs of 5 x  l0 s MCS (Fig. 3a). To ease the "un- 
locking" of ordered configurations, a rather small value of E was chosen, 
so that jumps against the field occur with significant probability. The 
associated histogram for the order parameter r exhibits two well-separated 
peaks (Fig. 3b), corresponding to the two phases. These findings clearly 
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Fig. 2. Typical observables as functions of density (ih) near the first-order transition Ibr 
a 30x30 system at E=3.0 and T=0.02. In {a) and (b), runs are started from initially 
random configurations. (a) Order parameters (qs) and (~u). (b) Conductivity (./) ~ (J)/~:. 
(c) Hysteresis loop across the first-order transition. Open (closed] circles refer to rtms started 
from ordered (random) initial configurations. 

support  the transit ion being first order  in this region, similar to the y---0 
case.C ~4~ Unfortunately,  lacking an equivalent of  the equilibrium free energy 
here, we cannot  establish the precise location of  the transition line without  
considerable computa t iona l  effort. 

As Ih increases, the hysteresis loops exhibited by ( ~ ) ,  (~g) ,  and 
( J )  shrink, becoming unobservable for ~h~>rho(),). Instead, the order 
parameters  ( ~ )  and ( ~ )  vary cont inuously  (Fig. 4) upon  crossing the 
line E,.(ih, y), typical of  a second-order  rather than first-order, transition. 
The nonzero  values at small E are due entirely to finite-size effects, being 
of  O((L• ~/2). Unlike the lh <Jho case above, the histograms for q5 
show a single peak, which moves smoothly  away from the origin as the 
transit ion line is crossed (Fig. 5). At the transition, the distribution 
broadens considerably (Fig. 5c), reflecting an increase in the order  
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Fig. 4, Typical observables as functions of E near the continuous transition for a 30 • 30 system 
at Ih = 0.80 and ~,= 0.02. Runs started from initially random or ordered configurations collapse 
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(d] E=0.34: (e} E=0.44. 

parameter fluctuations. These data strengthen our believe that this transi- 
tion is second order in nature. 

To investigate the transition in more detail, we perform long 
(5 • l0 s MCS) runs on a series of rectangular lattices, focusing on (q~), 
its fluctuations ((3q~)2), and ( J ) ,  at several values of E, just above and 
below the transition, keeping 3' and ih fixed. Anticipating a result from 
the mean-field theory analysis (Section 4), we plot our data versus the 
scaling variable g'-eLN, where g = 2  tanh(E/2) is the "coarse-grained' 
field. We should emphasize that our objective here is, first, to confirm the 
existence of a. continuous transition, and second, to gain initial insights 
into the finite-size and aspect-ratio dependence of characteristic quan- 
tities. We do not attempt, at this point, to measure, e.g., critical indices. 
The latter endeavor would require a detailed finite-size scaling analysis, 
focused on the critical region, where we may expect to observe deviations 
from the simple mean-field scaling adopted above. Currently, such a 
quantitative analysis is severely hampered by the absence of reliable field 

822,863-4-18 
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theory predictions for the leading universal scaling behavior of our 
model. 

Returning to the data, Fig. 6 shows our results for lattices with 
LII=20 fixed and L •  40 and 60, while Fig. 7 corresponds to 
L j_ = 20, 40 and 60 with L .  fixed at 20. With the exception of a finite-size 
tail, (q~) is essentially independent of L• depending on Lnn only through 

(Figs. 6a, 7a). From these figures we see that the critical point occurs at 
~ ~ 9.0. Keeping the limited accuracy of our data in the critical region in 
mind, a log-log plot of (q~) versus I~ ' -~  I yields a first estimate for the 
order parameter exponent fl ~ 0.4. A good indication for the presence of a 
continuous transition is provided by the fluctuations ((,Jqs) 2) (Figs. 6b, 
7b), normalized to 1 in the fully random phase (E=0) .  Again, the data 
collapse quite well. While the height of the peak centered around ,~,. 
appears to be only weakly dependent on Lil (Fig. 7b), it increases 
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Fig. 6. Characteristic observables as functions of ,.'3 =~:Lll near the continuous transition 
Ibr an L~ xL~l system with L , = 2 0  and L~ ranging from 20 to 60, at ih=0.80 and 
~, = 0.02: ( a I Order parameter (q~): ( b ) Normalized order parameter Iluctuations ( (zl(b)2); 
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significantly with L• (Fig. 6b). This intriguing size dependence is borne out 
by our theoretical analysis (Section 4). Finally, we focus on the conduc- 
tivity ( j ) -  (J)/e. Fluctuating about a constant value in the disordered 
phase, it appears to exhibit a discontinuity in its slope, upon crossing the 
transition line into the ordered region. Beyond the transition, it decreases 
monotonically, approaching a small limiting value deep in the ordered 
phase. This value is proportional to ),, which fits well with the picture that 
particle-hole exchanges are rare in this regime and (J)/e is dominated by 
the charge exchange mechanism. To summarize, all of these characteristics 
are consistent with the scenario of a continuous transition. Clearly, the 
scaling of the critical parameter, ~, with the longitudinal system size Lii is 
crucial: for L H ~ c~, the transition shifts to E = 0. 

For ),= 0.2 the behavior of the system is qualitatively similar to the 
case ),= 0.02. The major differences are as follows. 
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(i) Since larger 7 favors the disordered phase, the whole transition 
line is shifted upwards. 

(ii) The region between the spinodals is narrower. 

(iii) The point n3o(7) shifts to slightly higher densities. 

(iv) Finally, there appears to be a finite region of disorder for all E, 
just below complete filling. 

Concerning the last point, we have some further remarks. Clearly, the 
plane di = 1 itself must be disordered, given that the associated steady-state 
distribution is homogeneous. However, for 7=0.02,  E >  3.0 and 
L• = Lll = 30, the removal of just two particles suffices to induce spatial 
inhomogeneities, with the two holes performing a random walk which 
leaves a charge-segregated region in its wake. For ),=0.2, on the other 
hand, the system remains disordered until the density of holes exceeds 0.02 
on a 30 x 30 lattice. We should caution, however, that considerably more 
work is required here before a reliable conclusion, concerning the details of 
the phase diagram near n~ = 1 for different system sizes, can be reached. 

Once ), has reached 0.4, Iho(),) appears to have vanished, in that we no 
longer observe any indications of metastability or hysteresis. Thus, the line 
E,.(Iho(7), 7), being a line of multicritical points, separates a surface of first- 
order transitions from a surface of continuous ones. 

To complete the phase diagram, we also investigate the transition as 
), varies, for fixed (n~, E), in a system of size 30 x 30. Consistent with our 
previous findings for E,.(Iho(7), 7), the order of the transition depends on 
where the orderly disorder transition surface is crossed. For 7 > 7 , . -  0.62, 
the charge exchange mechanism suppresses the ordered phase entirely. 

3.2. Density Profiles in the Ordered Phase 

While the Fourier components (qs)  and (~u) allow us to distinguish 
easily between the disordered and ordered phases, the full profiles $(y) and 
$(y) carry far more detailed information about the structure of the ordered 
phase itself. In particular, characteristic profiles measured near the first- 
order transition differ significantly from their counterparts near the con- 
tinuous transition. Focusing on the ordered phase, just beyond the first- 
order transition line, the charge and hole density profiles are similar to 
those found in refs. 14 and 22 for ), = 0, i.e., the particle-rich strip exhibits 
three fairly sharp interfaces: two of these separate particles from holes at 
either end of the strip, while the third is located in the middle of the strip, 
marking the boundary between positive and negative charges (Fig. 8a). 
The hole density vanishes in the central region of the strip, so that the 
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Fig. 8. Characteristic protiles in the ordered phase. Circles and triangles denote simuhttion 
results for the hole density profile ~b(y) and the charge density profile g,(y), respectively. The 
system size is 30 x 30, ),= 0.02. Solid (dashed) lines are mean-field theory profiles for the hole 
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small residual current in this locked state is almost entirely due to charge 
exchange. In stark contrast, near the second-order line both charge and 
hole density profiles resemble harmonic functions, and the hole profile 
never vanishes, so that the system orders, but does not lock up fully 
(Fig. 8b). 

Moving deeper into the ordered phase, one might expect to find 
profiles similar to Fig. 8a. Instead, for larger particle densities the central 
interface begins to soften, so that the strip, reminiscent of a sandwich, 
develops three, rather than two, regions: while its lower (upper) part still 
consists mainly of + ( - )  charges, there is now a distinct middle section 
which shows both species mixing by virtue of charge exchange (Fig. 8c). At 
the same time, the interfaces between particles and holes remain quite 
sharp. Finally, turning to ordered profiles near complete filling, the middle 
section of the strip has widened even further, bounded by two regions of 
either charge at the ends. Simultaneously, the two particle-hole interfaces 
have approached one another so closely that the few remaining holes are 
confined to just two or three rows. In fact, it is intriguing to track the 
dynamics of the ordering process here, starting from an initially random 
configuration: each hole acts as a catalyst for the charge segregation 
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process, creating a predominantly positive domain separated by a sharp 
interface from a similar, negatively dominated region located "upstream." 
For the system sizes considered here, these partially ordered regions 
quickly merge into a single strip, trapping the holes in the interfacial region 
(Fig. 8d). Further studies are in progress to provide a more quantitative 
understanding of the phase diagram near complete filling. 

4. MEAN-FIELD THEORY 

We now turn to the analytic description of our model, in order to 
develop a better understanding of the nature of the order-disorder transition 
discussed in the previous section. As already indicated, this also provides the 
fi'amework in which first predictions, concerning, e.g., the size dependence of 
characteristic observables, can be made. Aiming toward universal properties, 
we will construct a set of coarse-grained equations of motion, in continuous 
space and time, for the two conserved densities in our system. While the 
master equation (2) is far too difficult to solve even for stationary states, 
it serves as a convenient starting point for this approach. A hierarchy of 
evolution equations for the densities and higher order correlations follows 
straightforwardly. The mean-field approximation consists in truncating 
higher order density-density correlations,~l 5~ so that a closed set of equations 
for the densities alone result. Explicit stationary solutions to these equations, 
corresponding to spatially homogeneous and inhomogeneous steady states, 
will be found. A linear stability analysis around the former will be presented. 
Our goal is to establish a parallel to the simulation results. By associating 
stable homogeneous solutions with the disordered phase, and stable 
inhomogeneous ones with typical ordered configurations, we are able to 
predict the characteristic behavior of the order parameters, the currents, and 
the density profiles. Finally, using an adiabatic elimination procedure, we 
project out an equation of motion for the slow mode, resulting in an analytic 
expression for a "tricritical" line which separates first-order from continuous 
transitions. Since this analytic approach provides us with good qualitative 
agreement with simulation results, we believe that considerable insight into 
the nature of these transitions is gained. 

4.1. Equations of Mot ion 

Defining the average densities of positive and negative charges, 
+ 

{n~.) ,  = Z c  n + P[ C, t], we obtain their equations of motion fi'om �9 . . '  

4- + c3,(n ~.), = y '  n~. O,PE C, t] (9) 
C" 
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Exploiting the master equation (2) with the transition rates (1), we find 
that the right-hand side of (9) will contain correlations of many n's. The 
mean-field approximation consists of truncating these correlations and 
replacing ( n . . .  n )  by (17) . . .  ( n ) .  As a result, (9) becomes a time evolu- 
tion equation for ( n+ . ) ,  alone. To simplify further, we take a naive con- 
tinuum limit, so that + (n,.-,.) --* p-+(r, t), where the latter symbol denotes the 
particle densities in continuous space. Since these are both conserved, the 
resulting equations take the form of continuity equations, O,p + + Vj -+ = 0. 
Spatial derivatives up to second order are included, choosing unit lattice 
constant. We will also need the continuum versions of the hole and charge 
densities defined in (4), namely ~ b ( r , t ) - l - [ p + ( r , t ) + p  ( r , t ) ]  and 
~b(r, t ) -  p+(r,  t ) - p - ( r ,  t). It is further convenient to introduce the asym- 
metric gradient operator V, defined via its action on two functions f and g, 
namely f V g - f V g - g V f  Extending our discussion to a d-dimensional 
system, with the drive acting only along the y direction, we must dis- 
tinguish spatial derivatives along the parallel direction, denoted by cO, from 
gradients restricted to the ( d -  1) transverse directions, V. The presence of 
spatial anisotropy is then reflected in the form of the currents, 
j +- = -F~Vp-+, where It +- denotes a scalar "chemical" potential and O~ is a 
mobility matrix which is diagonal without being a simple multiple of the 
unit matrix. Instead, we find with an appropriate rescaling of an overall 
time scale 2 that VF~V=~V2+O 2, with ~ = 2 / ( l + e  ILl). The resulting 
equations of motion now follow: 

a,p+-=-VK{[p+-V~-I-ef,  p+-dp]+),[p+-Vp~ +@p+-p~]} (10) 

Here, f, is a unit vector along the y direction, so that @ captures the effect 
of the drive, in our mean-field description. Its amplitude can be obtained 
explicitly from the microscopic rates (1) as 

= 2 tanh(E/2) ( 11 ) 

Equations (10) manifest the equivalent structure of particle-hole and 
charge exchanges, the ratio of the associated rates being },. Setting ~,= 0, we 
recover the equations of motion first proposed in ref. 14 for a model 
without charge exchange. Thus, the second term in the {...} brackets, being 
proportional to ~,, models the new process. The full expressions under the 
{...} brackets 'are just the current densities j-+ of the + ( - )  particles. One 
way to arrive at (10) is, in fact, through postulating reasonable constituent 
forms for the current. 

-" As a consequence of this rescaling, the mean-field "'time" differs IYom the MC "'time" by a 
Ihctor 1/~,. To ease comparisoq with analytic results, our MC data tbr the current (J)  have 
been normalized by this factor, which improves the data collapse in Fig. 6c signilicantly. 
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Equations (10) may also be regarded as the "coarse-grained" version 
of the microscopic dynamics, especially if we add Langevin noise terms. ~231 
In this sense, they play the same role for our model as the Landau-  
Ginzburg Hamiltonian for the Ising model. The important symmetry here, 
under the combined operation p -+ --* p ~- and e--* - e  is evident. 

A helpful, alternate perspective of (10) can be gained by using, instead 
o fp  + and p - ,  the hole and charge densities ~b(r, t) and qJ(r, t), respectively. 
Their time evolutions are governed by 

0,~b = V~{ V~b + @~b~} (12a) 

0 , ~ , = V ~  7vO+(l-),)ckcT~,-@ck(l-4))-~ep[(1-ek)'--~, 2] (12b) 

To complete the specification, we impose periodic boundary conditions 
(PBC) on the densities and constraints due to ih and zero net charge: 

and 

f dr ~b(r, t )= (1  -ifi)-LiLjl (t3a) 

Idr  ~(r, t) = 0 (13b) 

Finally, to compare with simulations, we should set d = 2. 

4.2. Homogeneous and Inhomogeneous Solutions 

In this subsection we investigate the stationary solutions of Eqs. (12), 
i.e., solutions satisfying O,q~ = 0,~ =0,  subject to PBC and the constraints 
(13). By virtue of (13b), it is immediately clear that such solutions can 
carry no hole (or mass) current: since the densities of positive and negative 
charges are equal, the net mass current through any surface will vanish in 
the steady state. The charge current, on the other hand, can and will be 
nontrivial. Being continuity equations, Eqs. (12) are trivially satisfied by 
homogeneous hole and charge densities: 

~(r) = 1 -n~, ~,(r) - 0 (14a) 

Inserting these into (12), we may identify the charge current density 
associated with these homogeneous solutions: 

JH=e[,fi(1--1h)+21f121 (14b) 
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Thus, the conductivity JH ~JH/~ is independent of e. Comparing to 
Figs. 4b, 6c, and 7c, we note that this is approximately satisfied by our 
simulation results. 

Next we demonstrate the existence of inhomogeneous solutions. To 
mirror typical ordered configurations, we seek solutions of the form 
~b(r, t)-q~(y), q;(r, t)---~(y), displaying a spatial dependence in y only. 
Inserting this ansatz, we can integrate Eqs. (12) once. The integration con- 
stants are just the hole and charge current densities carried by ~b(y) and 
tp(y). By symmetry, only the latter, denoted by J/,  can be nonzero. 
Rescaling the coordinate y ~ z - e y  and introducing the conductivity 
Jl -JJe, we cast Eqs. (12) into the form: 

0=~b' +~b~, (15a) 

7 --j,=),6'+(l-),)(~b~'-~b')-q~(l-~b)-=[(l-~b)2-r 2] (15b) 
z 

where ~b and qJ are simply functions of z, and the prime denotes differentia- 
tion with respect to z. Equation (15a) allows us to eliminate ~ = -~b'Ab in 
favor of ~b so that (15b) reduces to an ordinary second-order differential 
equation for ~b. Unlike ref. 14, however, the substitution X -  I/~b does not 
lead to an equation of potential form for X". Instead, suppressing the sub- 
script on j, we obtain 

{ } Z"=[l--),+),Z]-' --Jz2 +z - l  +~[(z-l)2 +(z') 2] (16) 

which reduces to potential form only upon setting ),= 0. However, defining 
a new function u(x(z)) via 

}, ) 1,2 
u = 1 + - - Z  > 0  ( 1 7 )  

1 - 7' 

we transform (16) into the desired form for all 7. Thus, 

d 
u " -  V(u) (18a) 

du 

where 

V(u)=~7{2_Vlnu_2~_ } u-" 1 (18b) - 8 8( 1 - ),)2 u 2 
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By definition, Z is restricted to the interval [ 1, oo), whence ( 1 -  7 ) - ' /2<  
u < Go. In order to find periodic solutions for u which map into spatially 
inhomogeneous solutions for ~b and ~, V(u) must possess a local minimum 
in that range. A simple analysis of (18b) shows that this is indeed the 
case for 

2 < J < 4 - 2 y  (19) 

Since the potential V(u) here is quite complex, the solutions of(18) cannot 
be found in closed form, unlike the 7=  0 model. ('4' 22) However, the charge 
and hole density profiles can easily be obtained by numerical integration. 
As initial conditions, we choose a value fo r j  in the range specified by (19), 
and set u(0)--uo, u ' (0)= 0. To compare with a simulation, the integration 
constants uo and j must be mapped onto the microscopic control 
parameters ~h, E, L j_ and Ltl. To reduce the number of adjustable 
parameters, we simply set L• =Ltt  =30. Once a mean-field profile ~b is 
obtained, we can determine, first, its overall mass density lh via 

dy (~(y) = (1 -~h) Lit, and second, its period eLtl. The latter provides us 
with E, via Eq. (11), so that there are no fit parameters! The resulting 
profiles, obtained by numerical integration of our mean-field theory and 
simulation at the associated points in the phase diagram, are shown in 
Fig. 8. The agreement is impressive. In particular, near complete filling the 
profiles clearly reflect the localization of the hole density at the steep 
plus-minus interface. To conclude, we note that small deviations from the 
Monte Carlo data are confined to the regions of largest ~b' and ~,', and can 
be reduced further by including higher derivatives in (10), (12). 

4.3. Linear Stability Analysis 

Recalling the homogeneous solutions, we see that from Eq. (14) one 
such solution exists at eve O, point of (lh, e) space. However, our mean-field 
analysis has not yet provided any insight into their stability, with respect 
to small perturbations. In order to explore this issue, we must return to the 
full time-dependent set of equations (10), (12). To investigate the evolution 
of a small harmonic perturbation about the homogeneous phase ~ =  1 -~h, 

= 0, we write 

~b(r, t ) = ~ +  ~ ~ ( k ) e x p [ - ( r t + i k . r ) ]  
k # o  

~(r, t ) = ~ +  ~, t ~ ( k ) e x p [ - ( r t + i k . r ) ]  
k ~ o  

(20a) 

(20b) 
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where k -  (k• ku) must be compatible with the periodic boundary condi- 
tions. Thus, in spatial dimension d =  2, we let ( k i , k u ) =  (2gn/Lj, 2rcm/Lu) 
with integer n, m. Assuming small amplitudes ~(k) and ~(k), we may 
linearize (12). Defining 

. k" F~(k) l  
~( ; - k ~ ( k ) J  (21a) 

we write the linearized equation as 

-c~(k) = [L(k) ~(k) (21b) 

where the matrix L(k) is given by 

I k ~ k  ikllec~ 1 L(k) = (21c) iklle[7(1-6)-(1-2~)] k~k[7(1 - 6 )  +6 ]  

with k ~ k = l c k ~ + k ~ l .  The two eigenvalues of [L(k) determine the two 
branches of the dispersion relation, r = r+(k), and from Eq. (21b) it is easy 
to see that the homogeneous phase remains stable with respect to small 
perturbations as long as the real part of r+(k) is positive for all k It is also 
easy to see that r + ( k •  ock~_>0. Further, since r+(ki,kli)> 
r+(0, k u) and the most relevant perturbation is the one associated with the 
smallest eigenvalue, we need to focus only on the k• = 0 modes. Not sur- 
prisingly, among this set, the slowest mode is associated with the lowest 
wave vector, i.e., k u = 2rolL u. Setting T (0, 2rr/L u) = 0 we thus find the first 
onset of instability. The result is that a specific homogeneous solution with 
mass density th will become unstable when e exceeds a critical en(Y, n~) 
given by 

1 --  nvt + yffl } i,,,2 
enLu=2X (1-1ff)[(2--y)l f f--1] (22) 

Since (22) is real only in the range 1 / (2 -  y ) -  ih,,,i,(y)< 1~ < 1 and diverges 
at the endpoints, the homogeneous solutions are stable outside this inter- 
val. In particular, if ), >/1, they are always stable. For three smaller values 
of ~, the resulling linear stability boundary is plotted in Fig. 9. Since we 
have neglected nonlinear terms as well as fluctuations, we cannot identify 
Eq. (22) directly with the observed phase boundary (Fig. 1). However, it 
does mirror the shape of the transition line surprisingly well, and predicts, 
in particular, the vanishing of the ordered phase beyond a critical ~,,.. 

Of course, a linear stability analysis cannot provide us with informa- 
tion on the nature of the phase transition. In particular, if the transition is 
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Fig. 9. Mean-field linear stability boundary of disordered phase in the 0h,~Lit) plane for 
three values of )'. The solid circles denote the "tricrifical" point Jh, defined via g( I - fib,, ~') = 0. 

first order, this study yields at best the spinodal line. A similar stability 
analysis for the ordered phase is needed. If that state becomes unstable at 
the same points in the phase diagram, we can claim that a continuous 
transition is present. If the stability limits occur at another line, we would 
identify that line with the second spinodal, so that the first order transi- 
tions would be located in between the two spinodals. Unfortunately, such 
a linear stability analysis for the inhomogeneous state is considerably more 
arduous and remains to be performed. ~24~ In its absence, we can obtain 
some insight into the nature of the transitions by going beyond the terms 
linear in perturbations around the homogeneous state. In the next subsec- 
tion we show the results of this approach, which exploits the method of 
adiabatic elimination ~2-~ to project an equation of motion for the slow 
mode out of the full nonlinear dynamics (12). 

4.4. Adiabat ic  El iminat ion of Fast Modes 

Since we are interested in the limit z (0, 2n/Lll)~ O, we expect that 
there is only one slow mode, corresponding to this eigenvector of L Let us 
denote it symbolically by M; its precise definition will be given below. At 
the linear level all other modes will decay rapidly. Therefore, at the 
quadratic level [ the only nonlinearity in (12)] the only modes with slow 
decay are those driven by M 2. Our analysis shows that there is only one 
such mode, which in turn is coupled back to M through a nonlinear term. 
The result is a nonlinear equation of motion for M alone. In this subsection 
we will give a few details of this approachJ 25~ 
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As we will be dealing with nonlinear contributions, we cannot make 
the same ansatz as in (20). Thus, we write the fields ~b, ~h, and ~ with their 
full time dependence. In Fourier space Eq. (12) now takes the form 

0,~(k, t) = - L ( k )  ~(k, t) + N(k; {~(k', t)}) (23a) 

Here, N(k; {~(k', t)} ) is a two-component vector, quadratic in ~ and (~: 

[ Nr { ~(k', t)} ))] (23b) 
N(k; {~(k', t )} )=  [ N,~(k; {~(k', t)} 

with 

N~ {~(k', t)})= -ikl,e~(k', t)t~(k-k', t) 
k' 

and 

N'~(k; { ~(k', t)} ) - (1 - ),) ~ ( k '  ~k '  - (k - k') ~(k  - k' )) (~(k', t )~(k - k', t) 
k' 

From the discussion in the previous paragraph, it is clear that we will never 
need to consider the k I --/: 0 sector. Focusing only on longitudinal modes, 
we define, for short 

/ 2~zm t ) ,  [l_(O, 2gm) ,  

(24) 
( 2 ~ m  {s  N,,=-N 0 , - - ;  

Lli 

Note that, due to the reality of ~b(r, t) and th(r, t), ~ . . . .  = ~,*,. 

In this notation the slow mode is part of ~,(t). If we denote the eigen- 
vectors of [1_, by ~_ and ~+, associated with the eigenvalues r (0, 2~z/Lil) 
and r . (0 ,  2n/Lil), then the slow mode (M) can be identified through the 
decomposition 

~ , ( t )  = M ( t )  6 _  + N ( t )  ~ + (25) 
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Explicitly, 

=- 2rci/eLl 1 (26) 

By virtue of momentum conservation, we see from Eq. (23), that ~,,, 
couples only tod, ,d  . . . . .  for all integer n. Near the transition we expect (the 
dominant parts of) all d,, with n > 1 to decay much faster than ~.~. There- 
fore in the long-time limit we may neglect products of two ~,,'s with n > 1, 
and write 

0,~  I "- - - L , ~ ,  + NI (~* ,  ~:2, 0,... ) (27a) 

for the n = 1 case. In the same spirit, the only ~,, > ~ which is coupled to the 
slow modes alone is the n = 2 case. Therefore, we may neglect all equations 
except for 

~t~2 "" --  [J--2~2 + N2(~ I ,  0, 0,...) (27b) 

Being a linear, though inhomogeneous, equation for ~2, it can be solved. 
In the long-time limit [-i.e., t comparable to 1/r (0,2g/Lii) but much 
greater than the eigenvalues of [1_s the solution is Ii_~ ~N~(~, 0, 0,...1. 
Inserting this result into (27a), we obtain an equation of motion for ~ 
only: 

0 , ~ ,  "-- - Ik, d,  + N , (~* ,  +[1_ 2 ' N_ , (~ , ,  0, 0, . . . ) ,  0, . . . )  ( 2 8 )  

The final step consists in projecting (28) onto ~ in order to extract 
an equation for the slow mode. Some care has to be taken here because [1_~ 
is not Hermitian, so that the appropriate left eigenvector (i.e., conjugate of 
0 ) must be computed. Meanwhile, since ~+ is associated with a fast mode 
through the nonvanishing eigenvalue r+(O,  2~/Lli), we may set N(t) _~ 0 in 
the long-time limit. Thus, from (25), we may approximate ~ ( t )  by M(t) 
when inserted into (28) or (27b). The result, after tedious but 
straightforward algebra, is a Ginzburg-Landau type equation for M(t): 

O,M= - { r M +  g [M[ 2 M +  O(MS)} (29) 

where r - r  (0,3n/Lii) is the soft eigenvalue and g is a complicated 
function of e, ),, ~b, and Ltl. Since (29) is of interest only near the stability 
limit, where r ~ O, we approximate e by e~t here. Using (22) to eliminate eH 
and ~ =  1 - i h ,  we obtain an explicit expression, up to an overall positive 
constant: 



Phase Transitions in Three-State Lattice Gas 745 

g oc [23(1 -?,)2 ( 2 -  y)2] ~4 

+ [30},(1 - ?,)(2- ?,)2- 44(1 _y)3 (2 -? , ) ]  ~3 

+ [20(1 - y)4 _ 64),( 1 - 3,) 2 (2 - ),)] ~2 

+ [32),(1 --3,) 3 --@2(1 -- y)(2-- y)] 

+ [ 5),2( 1 -- ),)2 ] (30) 

We recognize (29) as the equation of motion for a dynamic model 
involving simple relaxation and the usual Landau-Ginzburg ~b 4 
Hamiltonian. Thus, the sign of g determines the order of the transition. If 
it is positive, the transition is continuous. On the other hand, g < 0  is 
indicative that a first-order transition has presumably taken place beJbre 
we arrive at this r = 0  point. In the physical range 0<q~<l - i~ , , ,~ , ,=  
(1 - ) 9 / ( 2 - ) ' )  the (numerical) solution of (30) gives a unique zero for g at 
a critical hole density ~o()'). Thus we predict a crossover from a first order 
to a continuous transition as the mass density lh(),)= 1--~(),) increases 
beyond I/~o()'). One might label the point (t/io(),), e~(),, trio)), marked by the 
solid circles in Fig. 9, as a nonequilibrium "tricritical" point. Keeping in 
mind however, that M is complex, we should refrain from drawing serious 
conclusions based on tricritical properties in known equilibrium systems. 

For small ),, we find 

- + 0.053, + 0(3, 2) (31) 
th"(?') 2 ( x / ' ~ -  1 ) 

indicating that 1hal)') increases with ),, as borne out by the simulations. On 
the other hand, for ),--. 1, we observe that the "fraction" of the second- 
order region to the whole line, characterized by R(7) - - [ l - - iho( ) , ) ] /  
[1--ih,,i.(),) ] approaches the limit 5/6. So, intriguingly, even for ), very 
close to 1, mean-field theory predicts a small yet finite region of first order 
transitions, though these have not been observed in the simulations 
(Fig. 1). Two obvious possibilities for resolving this discrepancy is (a) that 
the transition is only weakly first order and (b) that they turn into con- 
tinuous transitions once fluctuations are included in the theory. 

5. C O N C L U S I O N S  

We have investigated, by both Monte Carlo simulations and con- 
tinuum mean-field theory techniques, the collective behavior of a system 
of two species of particles driven in opposite directions by an external 



746 Korniss et  al. 

"electric" field E. In this sense, we regard the particles as being oppositely 
"charged." Extending earlier studies,i 14 ~6~ where particle-particle 
exchanges were prohibited, we allow such exchanges to occur at a fraction 
), of the rate of particle-hole exchanges. As in the previous studies, square 
lattices with periodic boundary conditions are used. Also, the particles are 
non-interacting except for the excluded volume constraint, and the particle 
numbers of the two species are equal. Apart from y and E, the remaining 
control parameter is the overall density of particles, n~. 

Exploring in the range ), .%< 1, we seek transitions from a disordered 
phase with homogeneous densities and large currents to a "locked-up" 
phase characterized by inhomogeneous densities and small currents. First, 
we find a critical value y,. ~ 0.62 beyond which the system remains disor- 
dered for all (n~, E). In contrast, for ),<~,,. excluded volume effects 
dominate, so that the transition to ordered states occurs for sufficiently 
large r/~ or E. A phase diagram is mapped out: a single sheet of transitions 
is present in the (li~, E, ),) space. The nature of the transitions is first order 
on parts of this sheet and second order on other parts, with a line of multi- 
critical points as the common boundary. To support these findings, we 
checked for discontinuities in the order parameters across the transitions 
and looked for the presence of hysteresis. Further, we compiled histograms 
and inquired whether the distributions remain single-peaked or develop 
second peaks. The fluctuations were also measured and their divergence 
with system size was noted qualitatively. Since we have not performed 
extensive finite-size analyses, we cannot present precise values for the 
various critical exponents, associated with the continuous transitions. 
Finally, we measured the profiles of both the hole and the charge densities 
in the ordered phase, emphasizing the characteristic differences between 
cases with ),= 0 and y 4: 0. 

Turning to analytic studies, we first derived a mean-field set of equa- 
tions of motion for the two densities based on the master equation for 
our simple hopping model. We then demonstrated the existence of 
homogeneous and inhomogeneous stationary solutions to these equations, 
corresponding to the disordered and ordered phases respectively. The 
former follow trivially from conservation laws, while the latter can be 
found easily once the equations of motion have been recast in a form 
analogous to Newton's equation of motion for a particle in a potential. To 
confirm the presence of a transition between the two phases, we determined 
the linear stability boundary for the homogeneous solutions, noting that it 
mirrors the shape of the phase boundary rather well. In particular, the 
homogeneous phase was found to be stable for sufficiently large ),. The 
adiabatic elimination of the fast modes provided us with a Ginzburg- 
Landau type equation for the amplitude of the slow mode, thus giving us 
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some insight into the nature of the transitions: in agreement with the 
simulation data, the transitions are first order for small E and rh, turning 
second order as these parameters are increased beyond a multicritical 
point. Also, while the location of this point shifts to higher values of rh as 
~, increases, the width of the first order region shrinks, approaching a finite 
fraction of the width of the whole transition region. 

Finally, we conclude with some open questions and comments. While 
we have gained considerable insight into the finite-size and aspect-ratio 
dependence of the transition line throughout most of the phase diagram, 
the region near complete filling has not yet been explored in detail. It is 
here that the competition between ordering, mediated by the combination 
of bias and excluded volume constraints, and disordering, by virtue of 
charge exchange, may well be at its most subtle. Work is in progress to 
understand whether the transition line will meet the r h -  1 line at some 
finite, 9,-dependent E, or whether a finite region of disordered phase 
remains for all E. In the latter case, the system would display reentrant 
behavior. 

A second interesting issue concerns the universality class of the 
continuous transitions. Again it will be paramount to understand the 
detailed finite-size and aspect-ratio dependence of the order parameters 
and their fluctuations. This analysis would be greatly simplified if field 
theory predictions of the associated critical exponents were available. The 
first step 123~ toward the latter consists in adding appropriate noise terms to 
the mean-field equations (10), (12), proceeding to a full field theory for the 
slow mode M(r, t). Recalling the adiabatic elimination procedure, we see 
that any spatial dependence of M will be purely transverse. Our two- 
dimensional simulations will therefore be described by an effective theory 
in one (transverse) dimension which nevertheless exhibits a phase trans- 
ition. There is clearly ample scope for further surprises in our simple 
model. 
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